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A Comprehensive Phylogeny of
Beetles Reveals the Evolutionary
Origins of a Superradiation
Toby Hunt,1,2* Johannes Bergsten,1,2* Zuzana Levkanicova,3 Anna Papadopoulou,1,2
Oliver St. John,1,2 Ruth Wild,1,2 Peter M. Hammond,1 Dirk Ahrens,4 Michael Balke,1,4
Michael S. Caterino,1,5 Jesús Gómez-Zurita,1,6 Ignacio Ribera,7 Timothy G. Barraclough,2
Milada Bocakova,8 Ladislav Bocak,3 Alfried P. Vogler1,2†

Beetles represent almost one-fourth of all described species, and knowledge about their
relationships and evolution adds to our understanding of biodiversity. We performed a
comprehensive phylogenetic analysis of Coleoptera inferred from three genes and nearly 1900
species, representing more than 80% of the world’s recognized beetle families. We defined
basal relationships in the Polyphaga supergroup, which contains over 300,000 species, and
established five families as the earliest branching lineages. By dating the phylogeny, we found that
the success of beetles is explained neither by exceptional net diversification rates nor by a
predominant role of herbivory and the Cretaceous rise of angiosperms. Instead, the pre-Cretaceous
origin of more than 100 present-day lineages suggests that beetle species richness is due to
high survival of lineages and sustained diversification in a variety of niches.

The extraordinary diversity of beetles has
long fascinated evolutionary biologists
(1). The strongly sclerotized front wings

defining the order Coleoptera (the beetles), which
provide protection while retaining the ability of
powered flight with the membranous hindwings,
may be an evolutionary novelty that promoted
extensive diversification (2). Beetles appeared
around 285 million years ago (Ma) (2, 3), fol-
lowed by radiations of wood-boring (suborder

Archostemata), predacious (Adephaga), and fun-
givorous (Polyphaga) lineages (4) present in the
fossil record from the middle Triassic on (2, 3).
Their species richness is associated with extreme
morphological, ecological, and behavioral diver-
sity (4), and diversification of the most species-
rich extant lineages may have been driven by
co-radiations with angiosperms (5) and/or mam-
mals (6) and/or geological and climatic change (7)
occurring since the Cretaceous (145 to 65 Ma).

Studies of phylogenetic relationships within
the Coleoptera resulted in a preliminary consen-
sus on the classification, defining 4 suborders, 17
superfamilies, and 168 families (8–10). However,
formal phylogenetic analyses of morphological
characters (11, 12) and more recently molecular
data (5, 13, 14) have been limited to subgroups at
the family or superfamily level. Because of the
sheer size of the group and the complexity of
morphological character systems, these analyses
have not been applied to the entire order.

We compiled a three gene data matrix pro-
viding a complete taxonomic representation for
all suborders, series and superfamilies; >80% of
recognized families; and >60% of subfamilies

(9, 10), which together contain >95% of described
beetle species. Sequences for the small subunit
ribosomal RNA (18 S rRNA) were obtained for
1880 species from de novo sequencing and
existing databases. Mitochondrial 16S rRNA
(rrnL) and cytochrome oxidase subunit I (cox1)
sequences were added for nearly half of these taxa
(table S1) to create a datamatrix of rapid, medium,
and slowly evolving sequences. Phylogenetic
analysis of the combined matrix was performed
with a fragment-extension procedure for global
sequence alignment followed by tree searches
with fast parsimony algorithms (15). We tested for
long-branch attraction, i.e., the spurious pairing of
rapidly evolving lineages, by removing taxa ter-
minal to long branches and assessing trees with a
retention index (RI)measure of fit to the traditional
classification (table S2) (15). The resulting par-
simony tree largely agrees with the existing clas-
sification at the family and superfamily levels [on
average, 95.7% of terminals assigned to a family
were recovered as monophyla (table S2)], al-
though our taxon sampling was not comprehen-
sive in some families. Model-based Bayesian
methods were applied to a 340-taxon representa-
tive subset at the subfamily level.

The trees (Figs. 1 and 2) were rooted with the
neuropterid orders, the presumed sister to the
Coleoptera (16), and recovered the major subdi-
visions of Adephaga [37,000 known species;
posterior probability (pp) = 1.0] and Polyphaga
(>300,000 species; pp = 1.0) as sisters to the
Myxophaga (94 species) plus Archostemata (40
species) (8). The Adephaga was divided into two
clades containing an aquatic (Hydradephaga;
diving beetles and whirligig beetles; pp = 0.90)
and a terrestrial (Geadephaga; ground beetles and
tiger beetles; pp = 1.0) lineage, supporting a
single terrestrial-to-aquatic transition in this sub-
order (13).

In the strongly supported suborder Polypha-
ga, five families occupied the basal nodes (Figs.
1 and 2) (pp = 1.0). These families include the
Decliniidae; the Scirtidae, with aquatic larvae;
the Derodontidae, an ecologically diverse family
from global temperate zones; and the Eucinetidae
and the Clambidae. These ancestral five families
were previously considered basal Elateriformia
(superfamily Scirtoidea), except for Derodontidae,
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which has been associated with Bostrichiformia
(9, 10). All five families exhibit archaic morpho-
logical features shared only with Archostemata
and Adephaga (8, 17). Their basal position was
stable (always pp = 1.0) (table S3) when trees
were rooted with the neuropterid orders or only
with Myxophaga or Adephaga as outgroups.

All superfamilies of Polyphaga were previ-
ously grouped into five series (4, 9), of which
only the Scarabaeiformia (pp = 1.0) and the
Cucujiformia (pp = 1.0) were strongly supported
as monophyletic in this study. Staphyliniformia
comprised a paraphyletic basal grade, and both
Bostrichiformia and Elateriformia were polyphy-
letic. Relationships among the five series were
poorly supported or unresolved in the consensus
tree (fig. S1). Nosodendridae, usually included in
Bostrichiformia near Derodontidae (4, 9) but re-
cently associated with Scirtoidea on the basis of
thoracic characters (18), grouped instead with the
nonscirtoid Elateriformia, albeit with low support
(fig. S1) ( pp = 0.59).

Within Elateriformia, the superfamilies Bu-
prestoidea ( jewel beetles; pp = 1.0), Dascilloidea
( pp = 1.0), and Elateroidea (click beetles and
allies; pp = 0.72) were supported. Our data
showed that Byrrhoidea, sensu Lawrence and
Newton (9), is paraphyletic, supporting the divi-
sion of this clade (8) into Byrrhoidea (Byrrhidae,
moss beetles; pp = 1.0) and Dryopoidea (riffle
beetles and water pennies). The Cantharoidea
(soldier beetles, fireflies, etc.) fell inside the
Elateroidea, and our tree supported that biolumi-
nescence arose repeatedly in beetles, in agree-
ment with structural differences in luciferases
(19). Scarabaeiformia (chafers, stag beetles, and
dung beetles; pp = 1.0) is thought to be related to
the Staphyliniformia (4, 14, 20). In our trees, it
was part of an unresolved paraphyletic Staph-
yliniformia including the superfamilies Histeroi-
dea (clown beetles; pp = 1.0); Hydrophiloidea
(pp=1.0), a clade of both Leiodidae andAgyrtidae
(pp = 1.0); the Staphylinidae (rove beetles in-
cluding Silphidae and carrion beetles; pp = 0.86);
and the Hydraenidae as sister (pp = 0.74) to the
Ptiliidae (featherwing beetles).

The hyperdiverse Cucujiformia, representing
more than half of all beetles and 90 families, was
strongly supported as monophyletic (Figs. 1 and
2; pp = 1.0). Among the seven established super-
families, the Lymexyloidea (ship-timber beetles)
was found near the base of the Tenebrionoidea
(30 families; pp=0.76). TheCleroidea (checkered
beetles and allies) was monophyletic (pp = 0.70)
only when including the Biphyllidae plus Bytur-
idae ( pp = 1.0). The latter two were formerly
classified as Cucujoidea, but their associationwith
Cleroidea is supported by genitalic characters
(11). The Cucujoidea, comprising 34 families,
was polyphyletic, but the Cerylonid series (Figs.
1 and 2 and fig. S3) ( pp = 1.0) consisting of eight
families (21) was monophyletic. Apart from the
Sphindidae (pp = 1.0), the remaining cucujoid
families formed a monophyletic clade (pp = 0.72)
together with the species-rich Curculionoidea

(weevils and bark beetles; pp = 0.73) and
Chrysomeloidea (leaf beetles and longhorns).

Once the relationships among coleopteran
families and superfamilies were established, we
investigated the origins of beetle diversity. Diver-

sification may be driven by feeding strategy, and
we tested the hypothesis that feeding on plants
(herbivory), and specifically floweringplants (angio-
sperms), explains the diversity of beetles (5). Pre-
dominantly herbivorous clades tend to contain

Table 1. Comparisons of species richness between clades feeding on living plants and their sister clades
with alternative feeding strategies. Restricting the comparisons to those feeding on angiosperms removes
contrast 4 and adds two contrasts of angiosperm- versus gymnosperm-feeding lineages within Curcu-
lionoidea and twowithin Chrysomeloidea [table S4; see also (5)]. Plant-feeding clades include taxa feeding
mainly on rotting vegetation in contrast 7 or in recently dead wood in contrast 8, but probably >70% of
species in both clades are herbivorous. Excluding the last two contrasts increases the probability under a
Wilcoxon test to P = 0.28.

Plant-feeding Diet No. of
species

Non–plant-
feeding Diet No. of

species

1 Byturidae Fruits, flowers 16 Biphyllidae Fungivorous 195
2 Languriinae Stem borers 800 Xenoscelinae Fungivorous,

decaying
vegetation

100

3 Chrysomeloidea Herbivorous
xylophagous

53,442 Nitidulidae plus
Erotylid plus
Cucujid series

Mostly
fungivorous

7743

4 Curculionoidea Herbivorous
xylophagous

59,340 Brontinae plus
Silvaninae plus
Priasilphinae

Fungivorous 480

5 Epilachninae Herbivorous 1051 Coccidulinae
plus
Chilocorinae
plus Scymninae

Predacious 3900

6 Dascillinae Roots 80 Rhipiceridae Ectoparasitic on
cicadas

57

7 Melolonthinae
plus Orphninae
plus Rutelinae
plus Dynastinae

Herbivorous (and
saprophagous)

16,329 Cetoniinae Saprophagous
(detritus)

4121

8 Buprestidae Xylophagous,
herbivorous,
roots, leaf
miners

14,000 Dryopoidea Saprophagous,
algivorous

3242

Fig. 1. One of 27 most parsimo-
nious trees obtained from the
aligned 1880-taxon matrix. The
number of representatives from
each major lineage analyzed (in
colors) is given. Major clades are
denoted by letters: A, Adephaga;
B, Polyphaga; C, Polyphaga mi-
nus the ancestral five families;
and D, Cucujiformia. For full de-
tails of the tree, see fig. S4.
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more species than nonherbivorous sister clades,
but this difference was not significant [Table 1;
one-tailed Wilcoxon test on contrasts in log (no.

of species),P= 0.13] evenwhenwe distinguished
between angiosperm and gymnosperm feeders
(P = 0.06) (table S4). Similarly, of 21 significant

shifts in diversification rate inferred with a robust
equal rates null model (22, 23), only two charac-
terize transitions between angiosperm and gymno-

Fig. 2. The phylogeny of Coleoptera at the subfamily level. The tree was
selected from the 340-taxon Bayesian analysis based on maximum con-
gruence with the majority-rule consensus (fig. S1). Posterior probability clade
support values indicated at nodes >0.5. Approximate known species

numbers in terminal taxa are given in parentheses. Black circles mark
significant shifts in diversification rate of sister clades (table S5). Colored
triangles mark character transitions in lifestyles inferred by parsimony
optimization (see figs. S2 and S3 for details).

www.sciencemag.org SCIENCE VOL 318 21 DECEMBER 2007 1915

REPORTS

 o
n 

D
ec

em
be

r 
21

, 2
00

7 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


sperm feeders, whereas the remainder showed no
association with transitions to feeding on angio-
sperms or seed plants (table S5). A significant in-
crease in diversification rate was inferred near the
base of the Polyphaga whether herbivorous taxa
were included or excluded from the analyses (table
S5). Herbivory has played a role in the diversi-
fication of some beetle lineages, but the trait per
se does not explain why beetles are so diverse.

Fast diversification rates also do not explain
beetle diversity. Dating the tree with fossil cali-
bration and penalized likelihood rate-smoothing
(Fig. 3 and table S6) (15), we estimated net di-
versification rates across terminal taxa of 0.048 to
0.068 Myear−1 (table S7), slightly lower than
comparable measures for the angiosperms (0.077
Myear−1) (24). However, more than 100 modern

beetle lineages were present at the first appear-
ance of crown-group angiosperms dated to <140
Ma on the basis of pollen records (25), and less
than one-third of extant beetle species are asso-
ciated with angiosperms (table S8 and fig. S3).
Therefore, the extreme diversity of beetles re-
flects the Jurassic origin of numerous modern
lineages, high lineage survival, and the diversifi-
cation into a wide range of niches, including the
utilization of all parts of plants. These switches
into new niches occur repeatedly as, for example,
themultiple shifts from terrestrial to aquatic habits
in the evolutionary history of beetles, which oc-
curred at least 10 times (Fig. 2 and fig. S2).
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Fig. 3. A dated 340-
taxon “all-compatible”
consensus tree of Cole-
optera from Bayesian
analysis was dated with
penalized likelihood plac-
ing the origin of Coleop-
tera at 285 Ma (15).
Estimated number of
lineages present at 200
Ma, 36; at 140 Ma, 145;
and at 65 Ma, 301 (see
also table S7). Colors
correspond to the same
groups as in Fig. 1. Num-
bers refer to average ages
and 95% confidence
intervals (15) of selected
clades (open circles): CER,
Cerylonid series; CUC,
Cucujiformia; NIT, Niti-
dulidae; CUR, Curculion-
oidea; ELT, Elateroidea;
ELA, Elateriformia; BOS,
Bostrichiformia; HYP, Hy-
drophiloidea; HIS, Histeroi-
dea; POL, Polyphaga;
HYD, Hydradephaga; ADE,
Adephaga; and M&A, Myx-
ophaga and Archostemata.
Seven fossil calibration
points (table S6) were used
to cross-validate rate-
smoothing parameters (op-
timal value = 100) (15):
point a, Cupedidae; b,
Sogdodromeus (Geade-
phaga); c, Staphylinidae;
d, Holcorobeus (Scara-
baeoidea); e, Elatero-
phanes (Elateridae); f,
Cerambycomima (Chry-
someloidea); and g, Prae-
mordella (Mordellidae).
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