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Summary. The application of  maximum likelihood 
techniques to the estimation of  evolutionary trees from 
nucleic acid sequence data is discussed. A computa- 
tionally feasible method for finding such maximum 
likelihood estimates is developed, and a computer 
program is available. This method has advantages over 
the traditional parsimony algorithms, which can give 
misleading results if rates of  evolution differ in different 
lineages. It also allows the testing of  hypotheses about 
the constancy of  evolutionary rates by likelihood ratio 
tests, and gives rough indication of  the error of  the 
estimate of  the tree. 
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Introduction 

As DNA sequences accumulate, there will be an increas- 
ing demand for statistical methods to estimate evolu- 
tionary trees from them, and to test hypotheses about 
the evolutionary process. Most evolutionary trees con- 
structed from DNA or protein sequence data have been 
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produced by parsimony methods (Edwards 1963; Ed- 
wards and Cavalli-Sforza 1964; Camin and Sokal 1965). 
These methods implicitly assume that change is improb- 
able a priori (Felsenstein 1973, 1979). If the amount of  
change is small over the evolutionary times being con- 
sidered, parsimony methods will be well-justified statis- 
tical methods. 

Most data involve moderate to large amounts of  
change, and it is in such cases that parsimony methods 
can fail. When amounts of  evolutionary change in dif- 
ferent lineages are sufficiently unequal, it can be shown 
(Felsenstein 1978b) that parsimony methods make an 
inconsistent estimate of  the evolutionary tree, con- 
verging to the wrong tree with increasing certainty as 
more sequences are considered for the same set o f  
species. The compatibility approach to estimating 
evolutionary trees (Le Quesne 1969; Sheath et al. 1975; 
Estabrook and Landrum 1975) will suffer from the same 
difficulty (Felsenstein 1978b). 

A third approach estimates the tree from information 
on the pairwise similarity of  the sequences (Fitch and 
Margoliash 1967), without attempting to make full use 
of the information available in the original sequences. Of 
these methods, the least-squares approach of Chakra- 
borty (1977) is of  particular interest in having an ex- 
plicit statistical justification. Colless (1970) has shown 
that simple clustering methods based on pairwise simi- 
larities can give inconsistent estimates of  an evolutionary 
tree if rates of  evolution are sufficiently unequal in dif- 
ferent lineages. 

A fourth approach involves methods which try to 
make explicit and efficient use of all of the sequence 
data by formulating a probabilistic model of evolution 
and applying known statistical methods. Neyman (1971) 
and Holmquist (1972) have stated probabilistic models 
of  DNA evolution, and Neyman explicitly discussed 
statistical estimation methods using sequence data on 

0022-2844/81/0017/0368/$01.80  



369 

three species. Kashyap and Subas (1974) later extended 
Neyman's results to estimate evolutionary trees with 
many species, by looking at overlapping subsets of three 
species at a time. The problems which have prevented 
examination of multispecies sequence data are the dif- 
ficulty of the computations and the paucity of DNA 
sequence data available for analysis. Felsenstein (1973) 
gave an algorithm for evaluating the likelihood of an 
evolutionary tree with protein data, but this could not 
be developed into a practical maximum likelihood 
method for protein sequences because of the computa- 
tional burden. Ferris et al. (1979) have used a likelihood 
method for inferences regarding rates of loss of tetra- 
ploid expression at enzyme loci. Kaplan and Langley 
(1979) have used a probabilistic model of DNA evolu- 
tion to obtain maximum likelihood estimates of diver- 
gence times based on restriction enzyme fragment maps. 
They have not extended their method beyond two 
species, though they state that it can be so extended. 

This paper addresses the problem of inferring evolu- 
tionary trees (phylogenies) from DNA sequences under 
a simple probabilistic model of DNA evolution. An 
algorithm for computing the likelihood of a given tree is 
developed from the more general algorithm stated previ- 
ously (Felsenstein 1973). It is quite feasible computa- 
tionally, in contrast to the situation with protein se- 
quence data. Even with this algorithm in hand, we would 
still be faced with the daunting prospect of searching for 
the maximum likelihood tree by making small altera- 
tions in the tree while repeatedly evaluating its likeli- 
hood. For the particular case in which rates of base sub- 
stitution are  allowed to differ among lineages, an itera- 
tive method of altering the tree is developed which guar- 
antees a continued increase in the likelihood. This forms 
the basis of a computer program which makes maximum 
likelihood estimates of an evolutionary tree from DNA 
(or RNA) sequences. 

Computing the Likelihood of a Tree 

A simple general model of the evolution of DNA se- 
quence data would involve a probabilistic model of the 
process of branching which leads to the evolutionary 
tree, as well as a model of the process of change in DNA 
sequence along this tree. There are a number of reasons 
for not attempting a model of the first process. Such a 
model would have to involve both speciation and extinc- 
tion processes, as well as the process by which the 
species under study have been selected from among 
those potentially available. This last process seems im- 
possible to model adequately. For that reason I have 
taken the evolutionary tree to be the unknown entity 
being estimated, and have not attempted to use a prob- 
abilistic model of  branching to place prior probabilities 
on the form of the tree. 

Maximum likelihood estimation is the method of 
statistical inference most readily applicable to data of 
this sort. It involves finding that evolutionary tree which 
yields the highest probability of evolving the observed 
data. Note that although the likelihood of a tree is the 
probability of the data given the hypothesis, it is taken 
as a function of the hypothesis (the tree) rather than a 
function of the data. This means that the likelihoods for 
different trees do not sum to unity. Note also that the 
likelihood of a tree is not the probability that the tree 
is the correct one. 

Given that we are attempting maximum likelihood 
estimation, our problem reduces to computing the pro- 
bability of a particular set of sequences on a given tree 
and maximizing this probability over all evolutionary 
trees. The probability of obtaining a given set of sequen- 
ces at the tips of a given tree can be computed if we 
have a model specifying the probability that sequence 
S 1 changes to sequence S 2 during evolution along a 
segment of the tree of length (in time or other units) 
t. Computation is enormously facilitated if we can 
assume that changes at different sites in the sequence 
are probabilistic events which are independent. This is 
a restrictive assumption, but practical computation 
does not appear feasible without it. In particular, de- 
letion and insertion events, which usually involve adja- 
cent sites, cannot be adequately modeled by assuming 
independence of events at different sites. DNA sequence 
changes which are constrained to avoid termination 
codons or to avoid particular classes of amino acids 
also will involve some violation of independence. 

Given that we are willing to assume independence of 
evolution at different sites, it turns out that the probabi- 
lity of a given set of data arising on a given tree can be 
computed site by site, and the product of the probabil- 
ities taken across sites at the end of the computation. We 
therefore concentrate our efforts on computing this 
probability for a single site. For this we make use of the 
probabilities Pij(t), where i and j take values 1,2,  3, and 
4 corresponding to the four bases A, C, G, and T. Pij(t) 
is the probability that a lineage which is initially in state 
i will be in state j after t units of time have elapsed. We 
compute the Pij(t) later in this paper. For the moment 
we concentrate on obtaining an expression for the likeli- 
hood of the tree, namely the probability of the data 
given the tree. 

We assume that after speciation two lineages evolve 
independently, and that the same stochastic process of 
base substitution applies in all lineages. It is possible 
to write a general expression for the likelihood of a tree, 
but it will be more useful to present the expression for 
a particular case, the tree in Fig. 1, since the general pat- 
tern will be clear from that expression. The lengths of 
the segments of the tree are given by the quantities v i. If  
we knew the states (bases) at a particular site at points 
0, 6, 7 and 8 on this tree, and these were s 0, s 6, s 7, and 
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1 2 3 5 

~ 6  v2 ~3 4 V4~7 v5 
V 6 /~8 V7 

Fig. 1. The tree used in the discussion of computing the likeli- 
hood. The v's are the lengths of the segments 

s 8, the likelihood of the tree would be the product of 
the probabilities of change in each tree segment, times 
the prior probability 7rs0 of state s 0, so that it would be 

L = rrs0 Ps0s6 (v 6) Ps6sl (v 1) Ps6s2 (v 2) Ps0s8 (v 8) 
(1) 

Ps8s 3 (v3) Ps8s 7 (v7)" Ps7s 4 (v4) Ps7s 5 (v5) , 

where s i is the state at point i on the tree. In practice 
we do not know so, s6, s7, and s8, so the likelihood will 
be the sum over all possible assignments of bases to 
those forks on the tree: 

L = X  ~ Z ~ n P (v6) (Vl) 
s o s 6 s 7 s 8 so s0s 6 Ps6s 1 

Ps6s 2 (v2)Ps0s8(V8)Psss 3 (v3) 

"Ps8s7 (v7) Ps7s 4 (v4) Ps7s 5 (v5) 

(2) 

This expression will have 256 terms, and in general the 
expression for n species will have 22n'2 terms, which can 
easily be a very large number. 

Fortunately, a considerable economy can be realized 
by moving the summation signs rightwards in (2), ob- 
taining 

L= Z % )  ( h ) ]  (v2)] } So ~rs 0 {s~6 Psos 6 [Ps6s 1 [Ps6s 2 

(• (V8) (V3) ] [~ (V7) (3) s 8 Ps0s8 [Ps8s 3 Ps8s 7 

(Ps 7 s 4 (V4)) (Ps 7 s 5 (vs))] } . 

implies that this corresponds to starting at the tips of 
the tree and moving downward. We can restate this 
process in terms of conditional likelihoods: We define 
Ls(k) as the likelihood based on the data at or above 
point k on the tree, given that point k is known to have 
state s for the site under consideration. If point k is a 
tip, then Ls (k) will be zero for all s except that actually 

for which Lsk (k) = 1. This enables us to observed, start 
the computation by computing for each tip k a set of 
four Ls(k). 

This evaluation of expression (3) is then exactly equi- 
valent to the following algorithm. We work our way 
down the tree from the tips (in computer science par- 
lance, we perform a postorder tree traversal). For point 
k, whose immediate descendants are i and j, we can com- 
pute for all four values of s k 

(k) = (Z Psksi (v i) (i)) (:~ (vj) LsltJ) ) Lsk s i Lsi sj Psksj " 

(4) 

If this process is continued until we reach the bottom 
fork on the tree, it can be seen that all of the terms in 
(3) have been computed. For the bottom fork, point 0 
in our example, we will then have computed the four 
conditional likelihoods Ls0 (0) given the possible states 
of the site at point 0. The overall likelihood of the tree 
for the site under consideration is then 

L = E 7r L (o) (5) 
s O So s o 

completing the calculation of (3). This algorithm was 
stated earlier for a more general case (Felsenstein 1973). 
I have dubbed it "pruning", since it in effect removes 
two tips from the tree at each step. The pruning proce- 
dure is closely analogous to the "peeling" algorithms 
widely used in pedigree analysis in human population 
genetics (Elston and Stewart 1971; Cannings et al. 
1976), and to methods long used for evaluating poly- 
nomials in numerical analysis (Dahlquist et al. 1974, p. 
14). 

The 7r's must be the prior probabilities of finding 
each of the four bases at point 0 on the tree. Since 
we are assuming an evolutionary steady state in base 
composition, they reflect the overall base composition 
in the group under study. We will specify the Pij(t) in 
such a way that the probabilistic process leads to main- 
tenance of this same base composition, which we assume 
is given from external evidence. 

Notice that the pattern of parentheses in expression (3) 
bears an exact relationship to the topology of the tree, 
since it is ([][]} {[][( )( )]} There is one P for each seg- 
ment of the tree. The expression can be evaluated by 
working outwards from the innermost parentheses. The 
correspondence between the parentheses and the form 

The Base Substitution Probabilities 

We have not yet specified how the quantities Pij(t) are to 
be computed. These are the probabilities of transition 
from one base to another over a segment of length t. We 



shall assume that these probabilities reflect a Markov 
process, a process in which the probability of  a base 
changing may depend on its current identity, but not on 
its past history. Kaplan and Langley (1979) stated a 
simple Markov process model of  base substitution. Ours 
will be similar in spirit but  different in detail. 

We assume that in a small interval of  time of  length 
dt, there is a probability u dt that the current base at 
a site is replaced. The quantity u is the rate of  base sub- 
stitution per unit time. If  a base is replaced, its replace- 
ment is A, C, G, or T with probabilities lr 1, rr 2, 7r 3, or 
7r 4. Note that this means that a base could be replaced 
by the same base, so that not all substitutions are ob- 
servable even in principle. Note also that this model 
makes no distinction between transitions and trans- 
versions. If we let 5ij be 0 if i =# j and 1 if i = j (the 
Kronecker delta function), then we are in effect as- 
suming that for infinitesimal dt 

Pij (dt) = (1 - u dt) 6ij + u dt ~j (6) 

From this it can be shown in straightforward fashion 
that for arbitrary t, 

Pij (t) = e "ut ~iij + (I - e "ut) 1Tj (7) 

This follows almost immediately once one observes that 
e "ut is the probability that the site does not cha!age 
at all over a length of  time t, and that if it does change 
the probability that it ends up in state j is 7rj. This mo- 
del of  base substitution seems a useful compromise be- 
tween realism and tractability. 

One of  the convenient properties of  this Markov 
process model of  base substitution is known as re- 
vers ib i l i ty .  This means that the process of  base sub- 
stituion will look the same whether followed forward 
or backward in time. Reversibility requires that for all 
i , j ,  and t 

~i Pij (t) = Pji (t)/rj (8) 

which is easily proven using (7). The Markov process mo- 
del used by Kaplan and Langley (1979) was also re- 

versible. 
In equation (7), the probability of  change from base 

i to base j depends on t only through their product ut. 
I f  we were to double u and halve t, there would be no 
change in the Pij, so that the probabilities of  various 
data sets would not be affected. Thus all we can infer is 
the product ut, not u or t individually. If  u is the same 
for all lineages and all times, then ut should be propor- 
tional to the elapsed time t. In the absence of  external 
evidence about u or about t, we can adopt the conven- 
tion that u = 1, and thus measure t in units of  expected 
numbers of  substitutions. If  u is allowed to differ from 
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segment to segment on the treee, this will have the same 
consequences as letting t differ from elapsed time. Ex- 
cept in the case where u is to be assumed constant, we 
will not assume that t is elapsed time, but rather that it 
is time measured on a molecular clock which may run 
at different rates in different segments of  the tree. Thus 
we will usually not require that the total length o f  seg- 
ments from the bot tom fork up to each tip be the same. 
The tips need not be contemporaneous on this molecular 
clock whose units are expected fractions of  bases sub- 
stituted. 

The Pulley Principle 

The reversibility of  our Markov process and the absence 
of  constraints on segment lengths can be used to estab- 
lish an interesting and useful property of  the estimation 
of  evolutionary trees under this model. Consider the last 
two steps of  our algorithm for calculating likelihoods. 
They involved (in our example) forks 0, 6, and 8 in the 
expression for the likelihood of  the tree at one site: 

L = Z ns0 (Ps0s6 (v 6) Ls6(6)) (Ps0s8 (v 8) Ls8(8)) 
s o 

(9) 

A short derivation (Appendix 1) can be used to show 
that L is unaffected if we add a length x to v 6 and sub- 
tract the same amount from v 8. In other words, L de- 
pends on v 6 and v 8 only through their sum v 6 + v 8. 
Since the likelihood L is our only basis for comparing 
evolutionary trees, this means that the tree whose likeli- 
hood is being calculated could have its root anywhere 
between points 6 and 8. The root of  the tree is a sort of  
pulley, so that if all parts of  the tree to one side of  the 

2 

V 6 + ~  3 

8 

a 

4 5 

2 
1 

\ 
b 

5 

6+V8 

Fig. 2. Two trees whose likelihood will be equivalent to that 
in Fig 1 under the assumption of this paper 
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3 

~ 
~ V 2  6 V6' ( : V6 + V8) 4 4 

2 

Fig. 3. The unrooted tree whose likelihood is equivalent to 
those in Fig 1 and 2 

root are moved down, and all parts to the other side 
moved up by the same amount, the likelihood remains 
unaltered. The two trees in Fig. 2 cannot be distin- 
guished from the tree in Fig. 1, for the same v's. 

In fact, the argument can be applied repeatedly, and 
shows that there is no information whatsoever about 
the placement of  the root of  the tree. Fig. 3 shows the 
unrooted tree, which is what we are in effect estimating. 
The root of  the tree can be placed anywhere on that 
tree without affecting the likelihood. We are estimating 
not a single rooted tree but an equivalence class of  
rooted trees, namely all those compatible with a given 
unrooted tree. This I dub the Pulley Principle, and it 
will apply whenever the Markov process of  base change 
is reversible and the v i are unconstrained by any require- 
ment that the tips be contemporaneous. 

Finding the Maximum Likelihood Tree 

Our interest in the Pulley Principle is that it allows us 
to regard any given segment of  the unrooted tree as con- 
raining the root. This in turn allows us to alter the length 
of  that segment in an optimal fashion. We are interested 
in doing this because we still face a large computational 
task. We have a computationally feasible method for 
evaluating the likelihood of  a given tree, but this leaves 
us with the task of  finding the maximum likelihood tree. 
Consider the problem of  finding values of  the v i which 
maximize the likelihood of  the tree given a particular 
topology. We could do this by direct search, but this 
would require a very large number of  computations of  
the likelihood, one for each set of  vi's tried. At a mini- 
mum,  many hundreds of  likelihood computations would 
be needed. 

It is this problem which the Pulley Principle helps 
us to solve. It allows us to construct an algorithm which 
alters one of  the v i at a time, each one being altered to 
that value which results in the highest likelihood. This 
process continues until none of  the v i can be altered 
in a way which substantially improves the likelihood. 
At each stage one v is changed to the value which gives 
the greatest possible likelihood, given that only that v 
can be varied. Thus at each step the likelihood of  the 
tree increases. This process cannot fall into an endless 
loop, since the likelihood can never decrease. We de- 
scribe this iterative method below. 

Searching Among Tree Topologies 

There still remains the problem of examining many 
different tree topologies. It would in principle be possi- 
ble to simply look at each possible unrooted tree topo- 
logy, iterate the branch lengths to their optimal values 
for each one, and then pick that topology which has 
yielded the highest likelihood. This strategy is rendered 
impractical by the astronomical number of  possible 
topologies for even moderate numbers of  trees. Edwards 
and Cavalli-Sforza (1964) found that the number of  un- 
rooted bifurcating trees with n labelled tips was (2n-5)!/ 
[(n-3)! 2n'3], which for 10 tips is more than 2 million 
topologies. I have given elsewhere (Felsenstein 1978a)a 
method for computing the number of  rooted multi- 
furcating trees. Since the number of rooted trees with 
n labelled tips is the same as the number of unrooted 
trees with n+l labelled tips, we have immediately 
that there are over 12 million unrooted multifurcating 
trees with 10 tips. For 20 tips the number exceeds 
18 x 1021. 

Obviously some less ambitious search strategy must 
be employed. The strategy I have found useful is to 
build the tree up by successively adding species to it, 
starting with a two-species tree. When the k-th species 
is being added to the tree, there will be 2k-5 segments 
from which it could arise. Each of  these is tried and the 
maximum likelihood within the resulting topology eval- 
uated, by the iteration technique presented below. The 
placement yielding the highest likelihood is accepted. If  
the tree now has more than four species, before the next 
species is added local rearrangements are carried out in 
the tree to see if any of  these improves the likelihood 
of  the tree. If  any does, it is accepted and the local re- 
arrangement process continues until a tree is found 
which no local rearrangement can improve. 

This strategy of searching among possible topologies 
is not guaranteed to find the best topology, but I have 
found its performance satisfactory in practice. It de- 
pends on the order in which the species are added to the 
tree, so that if it is repeated with a different ordering of  
the species, a different result may be obtained. With 
extremely self-consistent data the same tree will result 
from all orderings of  the input data. With less self- 
consistent data, different results will be obtained. This 
is in a sense an advantage, as it allows us to explore 
different regions of  the likelihood surface, taking as our 
final estimate the result with highest likelihood. With n 
tip species this search strategy will examine at least 
2n 2 - 9n + 8 different topologies. 

Finding Optimum Segment Lengths 

Within each topology we examine, we must adjust the v i 
to their maximum likelihood values. As already indi- 
cated, this is done by adjusting each of  the v i in turn 
according to a method which guarantees that each of  the 



v i changes to that value which maximizes the likelihood 
of the tree, given the current values of  the other v's. 
We now derive this iteration method. 

Consider segment 7 of  the tree in Fig. 3, the segment 
connecting nodes 7 and 8. We can consider the root to 
be located in this segment, and use the pruning algo- 
rithm given above to compute the sets of  conditional 
likelihoods at points 7 and 8. Suppose that we take the 
root to be immediately to the right of  point 8. The like- 
lihood of the tree for one site is then given by 

L = ~  ~ Z n (0 )Ls8 (8 ) )  
s o s 8 s 7 So (Psos 8 

(Psos 7 (v7) Ls7(7)) 

= ~  ~ L ( 8 ) ( ~  (v7) Ls 7 (7)) 
s o So s o s 7 Ps0s7 

(10) 

since Ps0s8(0 ) = 8s0s8. 

Substituting into (10) the expression (7)wi th  u = 1, this 
becomes after some simplification 

L = e  "v7 Z 7r L (8) L (7) 
S S S 

S 

(11) 

+ (1 --e ~7) [Z ff L (8)] [Z n L (7)] . 
s 8 s8 s 8 s 7 s7 s 7 

This is the factor of the full likelihood which corre- 
sponds to one site. There is one factor like this for each 
site in the DNA, so that the full likelihood is of  the form 

L = I I  (Aiq+BiP)  , (12a) 
i 

where q = e "v7, p = 1 - q  = 1 - e  "v7, and A i and B i are the 
terms 

(8) L (7) (12b) Ai = ~ ~s Ls s 
S 

and 

~8 (7)) (12c) (8)) (~  ~s 7 Ls 7 B i = ( ~s 8 Ls 8 s 7 

for the i-th DNA site. We want to find the value of v 7 
which maximizes the likelihood. This is equivalent to 
finding the value of p which maximizes (12a) and then 
solving for v 7 = - ln  ( l - p ) .  

Taking logarithms in (12a), 

In L = Z In (Aiq + BiP ) (13) 
i 
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and equating the derivative of  this expression to zero, 

d In L B i - A i  
= Z - 0 (14) 

dp i (Aiq + BiP) 

Since if there are K sites in all, 

Aiq + BiP B i - (B i - A  i) q 
K = ~ a  = z  - z  .(15) 

i i Ai q + B i  p i Ai q + B i  p 

We can use (14) to eliminate the terms containing q in the 
numerator of  (15), obtaining 

B .  
1 

K = Z (16) 
i Aiq + BiP 

This condition must be satisfied if the derivative of  lnl  
is zero. Multiplying both sides of  (16) by p, we can turn 
this into the iteration formula 

Bip(k) 
p(k+l )  = 1 Z (17) 

K i Aiq(k ) + Bip(k ) 

where q(k) = 1-p(k). The result is an equation with p on 
both sides, which must be satisfied when the likelihood 
has reached a relative maximum. Equation (17) is an 
iterative version of  that equation. 

The iteration (17) is a specific case of  the general EM 
algorithm of Dempster et al. (1977), which is guaranteed 
never to go downhill on the likelihood surface. We use it 
by proceding through the evolutionary tree, iterating the 
Pi one after another. Each one of  the Pi is iterated until 
(17) converges, before moving to the next one. We 
iterate until we can made a complete pass through the 
tree, iterating all of  the Pi, without any of them chang- 
ing substantially. We presume that this represents a 
maximum of  the likelihood within the given topology. 
We can then use (13) to evaluate the likelihood of  the re- 
suiting tree. In fact, we are only guaranteed that we have 
increased the likelihood and have arrived at a stationary 
point. It could be a saddle-point rather than a maximum. 
I have yet to encounter such a case in practice. I f  one of  
the Pi iterates to zero, this indicates that we could not 
find a stationary point of  the likelihood within the topo- 
logy, and rearrangement of the tree is indicated. 

A Computer  Program 

The above algorithm has been incorporated into a com- 
puter program, written in PASCAL by Mark Moehring. 
The program computes the estimates in terms of  the Pi 
rather than v i, as the former seem more meaningful. The 
program is part of  a package of programs for numerical 
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estimation of evolutionary trees. This package will be 
supplied on request, written in standard ANSI format on 
a magnetic tape supplied by the recipient. It must be 
acknowledged that this computer program is quite slow, 
and could be effectively used only by someone who had 
free computer time available. The other programs in the 
package do not share this difficulty. 

Extensions 

There are many natural directions in which the present 
scheme can be extended. It is straightforward to incor- 
porate into the current algorithm the case in which some 
bases are not known unambiguously in the original data. 
If (say) site 3 could be either an A or a G, then it is 
merely necessary ot note that, by the definition of the 
conditional likelihood at that site L 1 = L 3 = 1 and 
L 2 = L 4 = 0. The result will be a correctly computed 
likelihood. 

Allowing some sites to be "hot spots" is also straight- 
forward. If  each site has probability x of having substitu- 
tion rate u 1 and 1-x of having substitution rate u 2, then 
if L(u) is the likelihood for the whole tree at a site given 
substitution rate u, the overall likelihood will be x L(ul) 
+ (l-x) L(u2). The iteration method can be appropria- 
tely altered to correspond to this model. It would also 
be quite easy to allow different substitution rates at the 
three positions of each codon. 

Hypothesis Testing 

The availability of maximum likelihood estimation 
makes available hypothesis testing by the likelihood 
ratio test. One could in principle test constancy of the 
rate of substitution. This would require some way of 
maximizing the likelihood under the constraint that all 
tips are contemporaneous. This constraint is not main- 
tained in the current iteration method, but the likeli- 
hood evaluation method given by equations (4), (5), and 
(7) above could be used together with a direct search 
method. The likelihood ratio test of constancy of rate 
of  evolution would have n-2 degrees of freedom if 
there were n tip species. Langley and Fitch (1974)have 
tested constancy of rate of protein evolution. Their 
test used as data ancestral sequences inferred by a parsi- 
mony method and thus does not constitute a likelihood 
ratio test of the sort carried out here. The present meth- 
odology could in principle be extended to protein data, 
but the computational effort would be prohibitive. 

One could also test whether alternatives to the maxi- 
mum likelihood topology were acceptable. One could 
test this in a crude way by evaluating the curvatures of 
the log-likelihood surface and using this to obtain an 
asymptotic covariance matrix of the v i. If  this indicates 
that one of them could be zero, this implies that alterna- 

tive branching patterns in that portion of the tree may 
be acceptable. This is one of the great advantages of the 
likelihood approach (or any statistical approach) - it 
gives us an indication of the amount of uncertainty in 
our estimate. 

In practice this covariance matrix is only obtained 
with some computational difficulty. A more limited in- 
dication of the statistical error can be obtained by ob- 
taining only the variances of the segment lengths. These 
are more easily computed. Each such variance is the in- 
verse of the curvature of the likelihood surface when all 
but one of the v i are held fixed. Recall that the log like- 
lihood as a function of the i-th segment length is given 
by equation (13) above. Its derivative with respect to p 
is given by equation (14) above. The second derivative is 

d 2 L (Bi - Ai)2 
= . ~  

dp2 i (Aiq + Bip)2 
(18) 

The asymptotic variance of our estimate of p will be 

d 2 L (Bi - Ai)2 
- 1 / ~  = 1 / ~  ,, ( 1 9 )  

dp 2 i (Aiq + Bip)2 

The quantities Ai, Bi, ~ and ~ are needed in the iterative 
method of computing our estimate of p, and are pre- 
sumably readily available. This variance can be readily 
converted into a corresponding variance of ~, by dividing 
(19) by ~2. 

The variance thus obtained is an underestimate of the 
true asymptotic variance, since the curvature (19) over- 
estimates the true curvature which would be obtained if 
we allowed all the pj to vary at once. The likelihood sur- 
face must fall off  at least as quickly when only Pi can 
vary as it will as a function of pj when the other Pk 
are allowed to vary so as to partially compensate for the 
effects of pj. 

A Numerical Example 

As a computational example, the above computer pro- 
gram has been applied to some of the eukaryotic 5S 
RNA sequences tabulated by Erdmann (1979). A curso- 
ry examination of the sequences shows that some dele- 
tion and insertions seems to have gone on. Since these 
processes are not incorporated in the model, and since 
the computer program is quite slow, attention was con- 
fined to the five vertebrate species (trout, Xenopus, 
turtle, iguana, and chicken). These seem to have homo- 
logous sequences. The 3' terminal base of all but Xeno- 
pus were omitted, so that all 120 positions could be 
compared. The sequences used were those labeled c. (a), 
Re, R. T., Tu, and X. L. S. in Erdmann's table. For the 
purposes of this example, the frequencies of the four 
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Fig. 4. The maximum likelihood estimate of the phylogeny 
for 5S RNA sequences from five vertebrate species 

bases were all taken to be 0.25, though the result is not  
particularly sensitive to  this assumption. 

Figure 4 shows the result, with the value of Pi given 
next  to each segment of  the tree. The topology pre- 
ferred is a nonstandard one. However, the lower bound 
variances on the segment lengths are very large, corre- 
sponding to the small amount of  sequence divergence 
between these groups, and hence the small amount  of  
information contained in 120 nucleotides. The segments 
leading to tips had 95% confidence limits which allowed 
them to range from near zero to about twice the estima- 
ted length shown in Fig. 4. The two interior segments 
could be as much as three times the length shown or 
could be negative in length (if  the estimated length was 
x, the confidence limits went from about -x up to about  
3x). This, being based on a lower bound on the variance, 
clearly implies that  we cannot exclude nearby alternative 
topologies for the tree. The support that  this data sup- 
plies for this nonstandard ancestry of  turtles is very 
weak indeed. 

This illustrates a strength of  the statistical inference 
approach. Had we obtained this tree by  a parsimony 
method we would have no way of  knowing how much 
credence to give the fact that  one tree required one more 
base substitution than another. A maximum likelihood 
estimate usually comes equipped with some indication 
o f  its own error. Cavender (1978) has made a start at 
computing the confidence sets for parsimony methods,  
but  until his approach can be extended to nucleotide 
data and to more than four species l ikelihood methods 
seem to have the edge. 

Limitations 

The model used here is highly idealized, and the preci- 
sion of  the statistical inferences must be reduced by  a 
factor representing one's skepticism of  the assumptions 
involved. The absence of  deletions and insertions, as well 
as of  constraints on amino acid substituion, are particu- 
lar sources of  concern. 
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I f  one is fitting the present model with the intent ion 
of  justifying the constancy of  rate of  substi tution by  the 
neutral mutat ion theory,  then the phenomenon dis- 
covered by  Gillespie and Langley (1979) will also be a 
source of skepticism. They showed that  if  4N e is large 
the number of  substituions in a given segment of  the tree 
has a variance greater than that  of  the Poisson distri- 
bution.  Their work also implies a correlation in the num- 
ber of  substitutions in the two segments issuing from the 
same fork. The distribution which they computed is a 
distribution over independent loci. Neighboring DNA 
sites never separated by  recombination would show 
numbers o f  substitutions, drawn from the same Poisson 
distribution (numbers at different loci would come from 
Poisson distributions with different means). I t  would be 
of  interest to know where the transition from the one 
behavior to the other occurs. One expects on intuitive 
grounds that  i t  is near the point  where the two sites are 
sufficiently far apart that  the recombination between 
them, r, exceeds 1/(2Ne). 
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A p p e n d i x  

Proof of the Pulley Principle 

Starting from equat ion (9), we can invoke the reversibility 
property (8) to note tha t  

% 0  Psos6 (v6) = 7rs0 Ps6s0 (v6) (A1) 

and then (9) can be wri t ten as 

L Ls 6 (6) Ls 8 (8) X; Psoso (v 8) = *rs6 So (v6) Psos 8 • (A2) 

If  the process whose probabilit ies are given by Pij(t) is a Markov 
process, then the Chapman-Kolmogorov equation given in any 
text  on stochastic processes replaces the summation on the 
right of (A2) by Ps6s8 (v 6 + Vs). This shows that  the likelihood 
depends only on the sum v 6 + v 8, so that  we may place the root  
anywhere in the segment of the tree connecting point  6 with 
point  8 (and in fact may move it elsewhere as well) wi thout  af- 
fecting the likelihood. 


