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Abstract. Phylogenetic relationship is essential in dating evolutionary events, 
reconstructing ancestral genes, predicting sites that are important to natural 
selection and, ultimately, understanding genomic evolution Three categories of 
phylogenetic methods are currently used: the distance-based, the maximum 
parsimony, and the maximum likelihood method. Here I present the mathe-
matical framework of these methods and their rationales, provide computa-
tional details for each of them, illustrate analytically and numerically the po-
tential biases inherent in these methods, and outline computational challenges 
and unresolved problems. This is followed by a brief discussion of the Bayes-
ian approach that has recently been used in molecular phylogenetics. 

8.1 Introduction 

Biodiversity comes in many colors and shades, and unorganized biodiversity can not 
only dazzle our eyes but also confuse our minds. Phylogenetics is a special branch of 
science with the aim to organize biodiversity based on the ancestor-descendent rela-
tionship. Molecular phylogenetics uses molecular sequence data to achieve its three 
main objectives: (1) to reconstruct the branching pattern of different evolutionary 
lineages such as species and genes, (2) to date evolutionary events such as speciation 
or gene duplication and subsequent functional divergence, and (3) to understand and 
summarize the evolutionary processes by substitution models. With the rapid increase 
of DNA and protein sequence data, and with the realization that DNA is the most 
reliable indicator of ancestor-descendent relationships, molecular phylogenetics has 
become one of the most dynamic fields in biology with solid theoretical foundations 
[1-3] and powerful software tools [4-8]. I will not argue for the importance of mo-
lecular phylogenetics other than quoting Aristotle’s statement that “He who sees 
things from the very beginning has the most advantageous view of them.” 

It is not always easy to see things from the very beginning. The evolutionary proc-
ess depicted in Fig. 1 shows an ancestral population with a single sequence shared 
among all individuals that have subsequently split into two populations and evolved 
and accumulated substitutions independently. Twelve substitutions have occurred, but 
only three differences can be observed between the sequences from the two extant 
species. The most fundamental difficulty in molecular phylogenetics is to estimate the 
true number of substitutions (i.e., 12) from the observed number of differences be-



172 Xuhua Xia 
tween extant sequences (i.e., 3). In short, the difficulty lies in how to correct for mul-
tiple hits. 
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Fig. 1.  Illustration of nucleotide substitutions and the difficulty in correcting multiple hits. 

The number of substitutions per site is known as a genetic distance. The simplest 
genetic distance, known as the p-distance (Dp), between two sequences is simply the 
number of different sites (N) divided by the sequence length (L).  For the two se-
quences in Fig. 1, Dp = 3/16. Because Dp does not correct for multiple hits, it is typi-
cally a severe underestimation of the genetic distance and has to be corrected. 

In the next few sections, I will first detail commonly used substitution models, de-
rive genetic distances based on the substitution models, and introduce the three cate-
gories of molecular phylogenetic methods: the distance-based, the maximum parsi-
mony and the maximum likelihood methods. This is followed by a numerical illustra-
tion of the Bayesian inference, together with a brief discussion of the Bayesian ap-
proach that has recently been used in molecular phylogenetics [9]. Potential problems 
with these phylogenetic methods will be highlighted. 

8.2 Substitution models 

Substitution models reflect our understanding of how molecular sequences change 
over time. They are the theoretical foundation for computing the genetic distance in 
the distance-based phylogenetic method and for computing the likelihood value in the 
maximum likelihood method for phylogenetics. There are three types of molecular 
sequences, i.e., nucleotide, amino acid and codon sequences. Consequently, there are 
three types of substitution models, i.e., nucleotide-based, amino acid-based and 
codon-based. We will focus on nucleotide-based substitution models, with only a 
brief discussion on amino acid-based and codon-based models to highlight a few 
potential problems. 
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8.2.1 Nucleotide-based substitution models and genetic distances 

Let pt be the vector of the four nucleotide frequencies in the order of A, G, C, T at 
time t. Nucleotide-based substitution models are characterized by a Markov chain of 
four discrete states as follows: 
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where M is the transition probability matrix and Pij is the probability of changing 
from state i to state j in one unit of time. Three frequently used special cases of equa-
tion (8.1) will be detailed here: the JC69 model [10], the K80 model [11], and the 
TN93 model [12]. 

The simplest nucleotide substitution model is the JC69 one-parameter model, in 
which all off-diagonal elements in M are identical and designated as α. The four 
diagonal elements in M are 1-3α constrained by the row sum equal to 1. There is a 
corresponding rate matrix, designated by Q , that differs from M only in that the di-
agonal elements are -3α, constrained by the row sum equal to 0. It is often more con-
venient to derive substitution rates by using Q  instead of M, as will be clear latter. 
Following equation (8.1), we have  
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Arranging the left side to be PA.t+1 - PA.t and then applying the continuous approxi-

mation, we have 
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Equation (8.3) is a special case of a general equation. Designate d as the vector of 

the four partial derivatives, the general equation is 
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 td PQ=  (8.4) 

 
where Q  is the rate matrix mentioned before. 

Suppose that we start with nucleotide A, what is the probability that it will stay as 
A or change to one of the other three nucleotides after time t? Given the initial condi-
tion that PA.0 = 1 and PC.0 = PG.0 = PT.0 = 0 and the constrain that that PA + PG + PC + 
PT = 1, equation (8.3) can be solved to yield 
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The time t in equation (8.5) is the time from the ancestor to the present. When we 

compare two extant sequences, the time is 2t, i.e., from one sequence to the ancestor 
and then back to the other sequence. So equation (8.5) has its general form as 
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The genetic distance (D), which is the number of substitutions per site, is defined 

as 2tμ where μ is the rate of substitution. For the JC69 mode, μ = 3α, so αt = D/6. 
Now we can readily derive D, now designated DJC69, from the probability of a site 
being different which is estimated by the p-distance (Dp) defined before. According to 
equation (8.6), 
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For the two sequences in Fig. 1, Dp = 3/16 = 0.1875 and DJC69 = 0.21576. The 

equilibrium frequencies are derived by setting (pi.t+1 – pi.t) in equation (8.3) to zero. 
Solving the resulting simultaneous equations with the constraint that the four fre-
quencies sum up to 1, we have PA.t =PG.t =PC.t =PT.t = 0.25. In summary, the JC69 
model assumes that (1) the four nucleotides can change into each other with equal 
probability and (2) the equilibrium frequencies are all equal to 0.25. 

The variance of DJC69 can be obtained by using the “delta” method [13]. When a 
variable Y is a function of a variable X, i.e., Y = F(X), the delta method allows us to 
obtain approximate formulation of the variance of Y if (1) Y is differentiable with 
respect to X and (2) the variance of X is known. The same can be extended to more 
variables. 
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The mathematical concept for the delta method is illustrated below, starting with 

the simplest case of Y = F(X). Regardless of the functional relationship between Y and 
X, we always have 
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where ΔY and ΔX are small changes in Y and X, respectively. 
Note that the variance of Y is the expectation of the squared deviations of Y, i.e.,  

 
2

2

( ) ( )

( ) ( )  .

V Y E Y

V X E X

= Δ

= Δ
 (8.10) 

Replacing (ΔY)2 and (ΔX)2 in equation (8.9) with V(Y) and V(X), we have 
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This relationship allows us to obtain an approximate formulation of the variance of 
either Y or X if we know either V(X) or V(Y).  For the variance of DJC69, we note that 
DJC69 is a function of Dp, and the variance of Dp is known from the binomial distribu-
tion: 
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where L is the length of the two aligned sequences. From the expression of DJC69 in 
equation (8.7), we have 
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Kimura [11] noted that transitional substitutions typically occur much more fre-

quently than transversions, and consequently proposed the two-parameter K80 model 
in which the rate of transitional substitutions (A↔G and T↔C) is designated as α 
and the rate of transversion substitutions (A↔T, A↔C, G↔T and G↔C) as β. Sub-
stituting this new Q  into equation (8.4) and solve the equations with the initial condi-
tion that PA.0 = 1 and PC.0 = PG.0 = PT.0 = 0 and the constrain that that PA + PG + PC + 
PT = 1as before, we have 

 



176 Xuhua Xia 

 

4 2( )
.

4 2( )
.

4
. .

1 1 1
4 4 2
1 1 1
4 4 2

1 1
 .

4 4

t t
A t

t t
G t

t
C t T t

P e e

P e e

P P e

β α β

β α β

β

− − +

− − +

−

= + +

= + −

= = −

 (8.14) 

 
Note again that time t in equation (8.14) should be 2t when used between two ex-

tant sequences. So equation (8.14) has its general form as 
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where Ps.t and Pv.t are the probabilities that a site differs by a transition and a transver-
sion, respectively, between two sequences that have diverged for time t, and can be 
estimated by the proportion of sites differ by a transition (P) and a transversion (Q), 
respectively. This leads to  
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Recall that the genetic distance is defined as 2tμ where μ = α + 2β for the K80 

model. Therefore, 
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For the two sequences in Fig. 1, P = 2/16, Q = 1/16, DK80 = 0.22073. The equilib-

rium frequencies are derived by setting d in equation (8.4) to the 0 vector. Solving the 
resulting simultaneous equations with the constraint that the four frequencies sum up 
to 1, we have PA.t =PG.t =PC.t =PT.t = 0.25. Thus, the K80 model shares with the JC69 
model the assumption that the equilibrium frequencies are all equal to 0.25. You 
might have noticed this because nucleotide frequencies are not featured in the expres-
sion of DJC69 or DK80. 

The variance of DK80 can be derived by the delta method as before: 
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Recall that P and Q stand for the proportion of sites that differ by a transitional 
change and differ by a transversional change, respectively. Designate R as the propor-
tion of identical sites (R = 1 – P – Q). From the trinomial distribution of (R + P + Q)L, 
we have: 
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Substituting these into equation (8.19), we have the variance of DK80: 
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where c = (a + b)/2, with a and b defined in equation (8.17). 
Note that equation (8.19) is a general equation for computing the variance by the 

delta method. For any function Y = F(X1, X2, ..., Xn), the variance of Y is obtained by 
the variance-covariance matrix of Xi multiplied left and right by the vector of partial 
derivatives of Y with respect to Xi.  

Tamura and Nei [12] noticed the rate difference between C↔T and A↔G transi-
tions and proposed the TN93 model with the following rate matrix: 
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where πi designates equilibrium nucleotide frequencies, and the diagonal is con-
strained by the row sum equal to 0.  

Following the same protocol as before, and designate P1, P2 and Q as the prob-
abilities of C↔T transitions, A↔G transitions and R↔Y transversions (R means 
either A or G and Y means either C or T), respectively, we can obtain,  
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Solving for α1t, α2t and βt from equations (8.23)-(8.25), we have 
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Because we can estimate P1, P2 and Q by the proportion of sites with C↔T transi-
tions, A↔G transitions and R↔Y transversions, respectively, DTN93 can be readily 
computed. For the two sequences in Fig. 1, DTN93 is 0.2525. The variance of DTN93 can 
be easily obtained by left- and right-multiplying the variance-covariance matrix of P1, 
P2 and Q with the vector of the three derivatives of DTN93 with respect to P1, P2 and Q 
in the same way shown in the last term of equation (8.19). The variance and covari-
ance of P1, P2 and Q can be obtained in the same way as in equation (8.20).  

Many more substitution models and genetic distances have been proposed [14], 
with the number of all possible time reversible models of nucleotide substitution 
being 203 [15]. In addition, there are more complicated models underlying the Log-
Det and the paralinear distances [16, 17] that can presumably accommodate the non-
stationarity of the substitution process. Different substitution models often lead to 
different trees produced and constitute a major source of controversy in molecular 
phylogenetics [18-20]. 



 8 Molecular Phylogenetics 179 
8.2.2 Amino acid-based and codon-based substitution models 

Amino acid-based models [21, 22] are similar in form to those nucleotide-based mod-
els in the previous section, except that the discrete states of the Markov chain will be 
20 instead of only 4. Because of the large size of the transition matrix, the transition 
probabilities are typically derived from empirical transition matrices [23, 24].  

There are three inherent difficulties with amino acid-based models. First, protein-
coding genes often differ much in substitution patterns, and one can never be sure if 
any of the empirical transition matrices is appropriate for the protein sequences one is 
studying. Second, note that an amino acid replacement is effected by a nonsynony-
mous codon replacement. Two codons can differ by 1, 2, or 3 sites, and an amino acid 
replacement involving two codons differing by one site is expected to be more likely 
than that involving two codons differing by 3 sites. Only a codon-based model can 
incorporate this information. Third, two similar amino acids are expected to, and do, 
replace each other more frequently than two different amino acids [25]. However, the 
similarity between amino acids is difficult to define. For example, polarity may be 
highly conserved at some sites but not at others. Two very different amino acids 
rarely replace each other in functionally important domains but can replace each other 
frequently at unimportant segment. Moreover, the likelihood of two amino acids 
replacing each other also depends on neighboring amino acids [26]. For example, 
whether a stretch of amino acids will form a α-helix may depend on whether the 
stretch contains a high proportion of amino acids with high helix-forming propensity, 
and not necessarily on whether a particular site is occupied by a particular amino 
acid.  

The codon-based substitution models [27, 28] were proposed to overcome some of 
the difficulties in amino acid-based models. These models share the third difficulty 
above with the amino acid-based models, and have additional problems of their own. 
For example, one cannot get good estimate of codon frequencies because protein-
coding genes are typically very short. An alternative is to use the F3x4 codon fre-
quency model [8, 29]. However, codon usage is affected by many factors, including 
differential ribonucleotide and tRNA abundance as well as biased mutation [30-32]. 
For example, the site-specific nucleotide frequencies are poor predictors of codon 
usage (Table 1) of protein-coding genes in Escherichia coli K12. The A-ending 
codon is used frequently for coding lysine, but the G-ending codon used frequently 
for coding glutamine (Table 1). The reason for this is simple. Six Lys-tRNA genes in 
E. coli K12 all have anticodons being UUU which can translate the AAA lysine 
codon better than the AAG lysine codon. For glutamine codons, there are two copies 
of Glu-tRNA genes (glnX and glnV) with a CUG anticodons matching the CAG 
codon and another two copies (glnW and glnU) with the UUG anticodon matching 
the CAA codon. However, the former is more abundant than the latter in the E. coli 
cell [33], which would favor the use of CAG against the CAA codon for glutamine. 
One should expect the F3x4 codon frequency model to perform poorly in such a 
situation which unfortunately is frequently encountered. 

Table 1. Site-specific nucleotide frequencies and codon usage in two codon families. AA – 
amino acid; Ncod – number of codon; CS - codon site. Results based on eight highly expressed 
genes (gapC, gapA, fbaB, ompC, fbaA, tufA, groS, groL) from the Escherichia coli K12 
genome (GenBank Accession: NC_000913) 

Nuc. Freq. by codon sites (CS)  Codon freq. 
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Base CS1 CS2 CS3  Codon AA Ncod 
A 0.273 0.32 0.18  AAG Lys 24 
C 0.189 0.24 0.326  AAA Lys 149 
G 0.409 0.16 0.219  CAG Gln 73 
U 0.129 0.28 0.275  CAA Gln 7 

8.3 Tree-building methods 

Three categories of tree-building methods are in common use: the distance-based, the 
maximum parsimony and the maximum likelihood methods. These methods have 
their respective advantages and disadvantages and I will provide mathematical details 
for the reader to understand their problems. 

8.3.1   Distance-based methods 

The distance-based methods build trees from a distance matrix, and are represented 
by the neighbor-joining (NJ) method [34], the Fitch-Margoliash (FM) method [35] 
and the FastME method [36]. The calculation of genetic distances has already been 
covered in previous sections. Other than the simplest UPGMA method, each tree-
building method consists of two steps: (1) the evaluation of branch lengths for a given 
topology by the least-squares (LS) method, the NJ method or the FM method, and (2) 
the selection of the best tree based on either the minimum evolution (ME) criterion or 
the least-squares or the weighted least-squares criterion referred to hereafter as the 
Fitch-Margoliash (FM) criterion. One should not confuse, e.g., the FM way of evalu-
ating branch lengths with the FM criterion for choosing the best tree. 

There are many ways of evaluating branch lengths for a given tree, and I will only 
present the LS method here. For the three-OTU (operational taxonomic unit) tree in 
Fig. 2A, the branch lengths (xi) can be solved uniquely by the following equations: 
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Fig. 2. Topologies for illustrating the distance-based methods in phylogenetic reconstruction. 

For the four-OTU tree in Fig. 2B, we can write down the equations in the same 
way as in equation (8.30), but there will be six equations for five unknowns. The LS 
method finds the xi values that minimize the sum of squared deviations (SS), 
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By taking the partial derivatives with respect to xi, setting the derivatives to zero 
and solving the resulting simultaneous equations, we get 
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With four OTUs, there are three unrooted trees. There are two commonly used cri-
teria for choosing the best tree. The first is the ME criterion based on the tree length 
(TL) which is the summation of all xi values. The tree with the smallest TL is chosen 
as the best tree. In contrast, the FM criterion chooses the tree with the smallest SS  
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where n is the number of OTUs and P often takes the value of 0 or 2. 
Whether a distance-based method will recover the true tree depends critically on 

the accuracy of the distance estimates. We will briefly examine this problem with 
both the ME criterion and the FM criterion. Let TLB and TLC be the tree length for 
Trees B and C in Fig. 2. Suppose that OTUs 1 and 3 have diverged from each other 
so much as to have experienced substitution saturation [37] to cause difficulty in 
estimating the true D13. Let pD13 be the estimated D13, where p measures the degree 
of underestimation (p < 1) or overestimation (p > 1). Designate DTL as the difference 
in TL between the two trees, 

 12 34 13 24- ( )
.

4TL B C

d d pd d
D TL TL

+ +
= − =  (8.34) 

According to the LS method of branch evaluation, Tree B is better than Tree C if 
DTL < 0, and worse than Tree C if DTL > 0. Simple distances such as the p-distance or 
JC69 distance tend to have p < 1 and consequently increase the chance of having DTL 
> 0, i.e., favoring the incorrect Tree C. This is the long-branch attraction problem, 
first recognized in the maximum parsimony method. Genetic distances corrected with 
the gamma-distributed rates over sites [12, 38-40] tend to have p > 1 when there is in 
fact no rate heterogeneity over sites, and consequently would favor Tree B over Tree 
C, leading to long-branch repulsion [41]. 
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The long-branch attraction and repulsion problem is also present with the FM cri-

terion. Let SSB and SSC be SS in equation (8.33) for Trees B and C, respectively. 
With P = 0 in equation (8.33) and letting DSS = SSB – SSC, we have 
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where x = d13+d24, y = d12+d34 and z = d14+d23.  
We now focus on Tree D, for which y is expected to equal z. Now equation (8.35) 

is reduced to  
 24 ( )SSD x y= −  (8.36) 
If branch lengths are accurately estimated, then x = y = 10, and DSS = 0, i.e., neither 

Tree B nor Tree C is favored. However, if d13 (i.e., the summation of the two long 
branches) is under- or overestimated, then DSS > 0 favoring Tree C. This means that 
both under- and overestimation of the distance between divergence taxa will lead to 
long-branch attraction. This can be better illustrated with a numerical example with 
Tree D in Fig. 2 which also displays three distance matrices. The first one is accurate, 
the second one has genetic distances more underestimated for more divergent taxa, 
and the third has genetic distances more overestimated for more divergent taxa (e.g., 
when gamma-distributed rates are assumed when the rate is in fact constant over 
sites). Note that Tree B and Tree C converge to Tree D when x5 = 0. Table 2 shows 
the results by applying the ME and LS criterion in analyzing the three distance matri-
ces. 

When the distances are accurate, both the ME criterion and the FM criterion re-
covers Tree D (the true tree) with x5 = 0, TL = 10, and SS = 0. However, ME criterion 
favors Tree C when long branches are underestimated, and Tree B when long 
branches are overestimated. In contrast, the FM criterion would favor Tree C with 
both under- and overestimated distances (Table 2) when negative branches are al-
lowed.  

Table 2. Effect of under- and over-estimation of genetic distances  

 Distance matrix 
 Correct  Under- Over- 
 TreeB TreeC  TreeB TreeC TreeB TreeC
TL 10 10  7.75 7.5 12.5 13
SS 0 0  0.25 0 1 0
x5 0 0  -0.25 0.5 0.5 -1

8.3.2   Maximum parsimony methods 

In contrast to the distance-based methods, maximum parsimony (MP) and maxi-
mum likelihood methods are character-based methods. The six aligned sequences in 
Fig. 3 have nine sites, with sites 2, 4, 9 being monomorphic, and the rest of sites be-
ing polymorphic. A polymorphic site with at least two different states each repre-
sented by at least two OTUs is defined as an informative site. The MP method oper-
ates on informative sites only.  
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S6 CATGCCGGC

S5 TATGCCGGC

S4 GACGTTGAC

S3 TACGTCAAC

S2 AACGTCGGC

S1 AATGCCGGC

∪→(T,C)

∪→(A,T)

∩→(T)

∪→(A,T,G)

∪→(T,G)

123456789

 
Fig. 3. Computing the minimum number of changes for the first site of the six alignment se-
quences in phylogenetic reconstruction using the maximum parsimony method.  

Given a topology, the minimum number of changes for each sequence site is com-
puted, with the computation of the first site illustrated in Fig. 3. Each node is repre-
sented by a set of characters, with the terminal nodes (leaves) each represented by a 
set containing a single character. The method traverses through each internal node, 
starting from the node closest to the leaves. If two sets of the two daughter nodes 
have an empty intersection, then the node will be represented by the union of the two 
daughter sets, otherwise the node will be represented by the intersection. Once the 
operation reaches the root, then the number of union operations is the minimum num-
ber of changes needed to map the site to the tree. Site 1 in Fig. 3 requires four union 
operations (Fig. 3), whereas sites 3, 5, and 8 each require only one union operation. 
Sites 6 and 7, which are polymorphic with two nucleotide states but not informative, 
will require one change for any topology. So the minimum number of changes, also 
referred to as the tree length, given the topology and the sequences in Fig. 3, is nine. 
The same computation is done for other possible topologies and the tree with the 
smallest tree length is taken as the MP tree. 

The MP method is known to be inconsistent [42, 43] and I will provide a simple 
demonstration here by using trees in Fig. 4. With four species, we have three possible 
unrooted topologies, designated Ti (i = 1, 2, 3), with T1 being the correct topology.  

 

S1

S2

S3

S4

S1

S3

S2

S4

S1

S4

S3

S2

(T1) (T2) (T3)
 

Fig. 4. The long-branch attraction problem in the maximum parsimony methods. 

Let Xij be nucleotide at site j for species Xi, and L be the sequence length. For sim-
plicity, assume that nucleotide frequencies are all equal to 0.25. Suppose that the 
lineages leading to X1 and X3 have experienced full substitution saturation, so that 

 1 , 1 3 , 3Pr( ) Pr( ) 0.25j ij i j ij iX X X X≠ ≠= = = =  (8.37) 



184 Xuhua Xia 
where Pr stands for probability. The lineages leading to X2 and X4 have not experi-
enced substitution saturation and have 

 2 4Pr( )j jX X P= =  (8.38) 

where P > 0.25. For simplicity, let us set P = 0.8, and L = 1000. 
We now consider the expected number of informative sites, designated by ni (i = 1, 

2, 3), favoring Ti. By definition, site j is informative and favoring T1 if it meets the 
following three conditions: X1j = X2j, X3j = X4j, X1j ≠ X3j. Similarly, site j favors T2 if 
X1j = X3j, X2j = X4j, X1j ≠ X2j. Thus, the expected numbers of informative sites favoring 
T1, T2 and T3, respectively, are 
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 (8.39) 

The equations mean that, in spite of T1 being the true topology, we should have, on 
average, only about 47 informative sites favoring T1 and T3, but 150 sites supporting 
the wrong tree T2. This is one of the several causes for the familiar problem of long-
branch attraction [44] or short-branch attraction [45]. Because it is the two short 
branches that contribute a large number of informative sites supporting the wrong 
tree, “short-branch attraction” seems a more appropriate term for the problem than 
“long-branch attraction”.  

8.3.3   Maximum likelihood methods 

The maximum likelihood (ML) method is based on explicit substitution models. 
Many different types of computer simulation have demonstrated the superiority of the 
ML method in recovering the true tree. I now use the four aligned sequences in Fig. 5 
to illustrate numerically the computation involved in the ML method based on the 
JC69 model. With four sequences, we have three possible unrooted topologies of 
which one is shown in Fig. 5.  

 

S1:A S3:G

S2:A S4:G
65

t1
t2

t3
t4

t5

16

L1 = prob.                        + prob.                        + ... +

A
A
G
G

C

A

A
A
G
G

T

T

A
A
G
G

A

A
S1 ACATACGT
S2 ACATACGT
S3 GTCGACGT
S4 GTCGACGT

Fig. 5. Likelihood calculation for the first site of the four aligned sequences. 

The sequences have 8 sites, with the first four sites sharing one site pattern and the 
last four sites sharing another site pattern. So we need only two site-specific likeli-
hood functions. The likelihood function of the first site, given the topology in Fig. 5, 
is the summation of the 16 probabilities corresponding to the 16 nucleotide combina-
tions of the two internal nodes with unknown nucleotides (Fig. 5). Thus, the likeli-
hood of the first site is, 
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 (8.40) 

 
where Pij.t for the JC69 model has already been given in equation (8.6) except that 
“8αt” should be replaced by “4αt”. Note that L2 = L3 = L4 =L1. We can write L5 (= L6 
= L7 = L8) in a similar fashion. 

The sequences in Fig. 5 allow us to simplify equation (8.40) greatly. Note that S1 
= S2 and S3 = S4 (Fig. 5) so that αt1, αt2, αt3, and αt4 are all zero. Now we have 
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 (8.41) 

 
With the assumption that all sites evolve independently, the likelihood function for 

all eight sites is simply 
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 (8.42) 

 
 The αt5 value that maximizes lnL is 0.27465, which leads to lnL = -21.02998. The 

branch length between nodes 5 and 6 is 3αt5 = 0.82396. We can do the same calcula-
tion for the other two possible topologies, and then choose the tree with the largest 
lnL value as the ML tree. In this particular example, the tree in Fig. 5 is the ML tree 
because it has the lnL value greater than that of the other two trees. One may also find 
that the ML tree, including its estimated branch lengths, is identical to the tree from a 
distance-based method such as the neighbor-joining [34], the FastME [36] or the 
Fitch-Margoliash method [35] as long as the JC69 distance is used. 

There are two major criticisms on the ML method in phylogenetics. The first is 
that the application of the likelihood in phylogenetics is not really a ML method in its 
conventional sense because the topology is not in the likelihood function [3, 46]. To 
see this point, we can illustrate the conventional ML method with a simple example. 

Suppose we wish to estimate the proportion of males (p) of a fish population in a 
large lake. A random sample of N fish contains M males. With the binomial distribu-
tion, the likelihood function is  
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−
 (8.43) 

The maximum likelihood method finds the value of p that maximizes the likeli-
hood value. This maximization process is simplified by maximizing the natural loga-
rithm of L instead: 
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The likelihood estimate of the variance of p is the negative reciprocal of the second 
derivative, 
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Note that, in contrast to the likelihood in equation (8.44) which is a function of p 
(the parameter to be estimated), the likelihood in equation (8.42) does not have the 
topology as a parameter. Without the convenient “∂lnL/∂θ = 0” formulation, we have 
to do either exhaustive or branch-and-bound search in order to find the topology that 
maximizes that likelihood. In practice, exhaustive or branch-and-bound search is 
rarely done, which implies that few of the published ML trees are authentic ML trees. 
Thus, Nei’s criticism highlights more of a practical difficulty than a theoretical one 
because the likelihood principle does not require the parameter to be continuous and 
differentiable [47]. The criticism can also be applied to other phylogenetic methods. 
However, other methods are generally faster and can search the tree space more thor-
oughly than the ML method. Therefore, while it is not particularly controversial to 
claim that an authentic ML tree is generally better than a tree satisfying the MP, ME 
or FM criterion, it is not unreasonable for one to expect the latter to be as good as or 
better than a “ML” tree that is derived from searching a small subset of all possible 
topologies. This is particularly pertinent with reconstructing very large phylogenies 
[48]. 

The second criticism is on the assumptions shared by nearly all the substitution 
models currently implemented in the likelihood framework: (1) the substitutions oc-
cur independently in different lineages, (2) substitutions occur independently among 
sites, and (3) the process of substitution is described by a time-homogeneous  (sta-
tionary) Markov process . The first assumption is false in taxa with a history of hori-
zontal gene transfer [49-54]. The problem of the second assumption can be illustrated 
with the following example involving the GAT and GGT codons. Both codons end 
with a T. Whether a T→A substitution would occur depends much on whether the 
second position is an A or a G. The T→A substitution is rare when the second codon 
position is A because a T→A mutation in the GAT codon is nonsynonymous, but 
relatively frequent when the second codon position is G because such a T→A muta-
tion in a GGT codon is synonymous. So nucleotide substitutions do not occur inde-
pendently among sites. This is one of the reasons for using codon-based models but 
these models have their own problems as mentioned before. The third assumption is 
also problematic. Suppose we wish to reconstruct a tree from a group of orthologous 
sequences from both invertebrate and vertebrate species. There is little DNA methyla-
tion in invertebrate genomes, but heavy DNA methylation in some vertebrate ge-
nomes. DNA methylation greatly enhanced the C→T transition (and consequently the 
G→A transition on the opposite strand [55]. The net result is a much elevated transi-
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tion/transversion bias and increased AT% in the lineages with DNA methylation, 
violating the third assumption.  

More complicated models have been proposed in response to our increased knowl-
edge of the substitution process. However, such parameter-rich models require more 
data for reliable parameter estimation. The dilemma is that increasing the sequence 
length also increases the heterogeneity of substitution processes [56] including het-
erotachy [57] operating on different sequence segments and consequently increase the 
number of parameters to be estimated. Such heterogeneity over sites implies that the 
consistency of the ML method [47, 58] is not of much value because we cannot get 
long sequences for a fixed and small number of parameters. Take for example the 
estimation of the proportion of male fish in the lake. If we get only six male fish in a 
sample with no female, then the likelihood estimation of p is 1 which is worse than 
our wildest guess without any data. 

8.3.4   Bayesian inference 

The Bayesian approach has only recently been used in phylogenetic inference [9]. 
Here I illustrate the basic principle of the Bayesian approach by using the problem of 
estimating the proportion (p) of males when the sample of six fish being all males. 
For a continuous variable such as p, the Bayes’ theorem is 
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where θ is the parameter of interest, y is the observed sample data, f(θ) is the prior 
probability for incorporating our prior knowledge on θ, f(y|θ) is the likelihood, and 
f(θ|y) is the posterior probability. In practice, equation (8.46) is rarely used because 
the integration in the denominator is difficult unless f(θ) and f(y|θ) are very simple, 
although the MCMC (Markov chain Monte Carlo) approach [59, 60] can alleviate the 
problem. Two alternative approaches have been devised to ease the computation 
burden, one being to use discrete approximations to continuous probability models, 
and the other being to use the conjugate prior distributions. For our example involv-
ing a stationary and independent Bernoulli process in estimating p, the conjugate 
prior distribution is the beta distribution with the following f(p): 
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 (8.47) 

 
Let’s designate n and r as as n’ and r’ in the prior distribution, n” and r” in the pos-

terior distribution, and just as n and r in the sample. If we expect the fish species to 
have equal number of males and females, then for a sample of six fish (n’ = 6), we 
expect r’ to be 3. The prior probability can be calculated from equation (8.47) and 
shown in Fig. 6.  

It can be proven that, if the prior distribution of p is a beta distribution, then the 
posterior distribution will also be a beta distribution with the two parameters com-
puted according to Eq. (8.48) below. In our actual sample with six males and 0 fe-
male (n = 6 and r = 6), 



188 Xuhua Xia 
 

 
" ' 3 6 9
" ' 6 6 12

r r r
n n n
= + = + =
= + = + =

 (8.48) 

 
Now the posterior probability can be calculated by using equation (8.47) and 

shown in  Fig. 6 in comparison with the prior probability. Thus, our prior expectation 
of p = 0.5 has been revised by the actual sample to p = 0.8. One may note that if the 
population of fish is indeed made of all males, e.g., when there is a high concentration 
of androgen masculinizing all individuals to males [61], then the likelihood estimate 
of p = 1 is correct and the Bayesian estimate of p = 0.8 is wrong, and the wrong esti-
mate may lead to our failure to identify an environmental crisis. 
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Fig. 6. Comparison between prior and posterior probabilities. 

In Bayesian phylogenetics, θ is a collection of the tree topology, the rate matrix 
and the branch lengths, and the likelihood function is formulated as in the maximum 
likelihood method. The main difficulty is the justification of the prior probability [1, 
62, 63] which is problematic even for the simple example of estimating p.  

8.4 Final words 

What I have presented is only the tip of the iceberg. One need to go down and get 
wet to see what is truly big (and truly messy). The models and equations are pre-
sented more for convenience than for mathematical rigor, but should work well for 
pedagogical purposes. I used to tell my son that his toys were alive with their own 
minds so he should be nice to them otherwise they would be upset and refuse to play 
with him. Such a lousy worldview nevertheless seemed to work perfectly well for 
him. I am sure that my son will grow out of this worldview, just as I am sure that the 
reader will grow out of the conceptual framework of molecular phylogenetics that is 
presented in this paper. 
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